Bonnygate Primary School

Mathematics Calculation Policy
 February 2024

- The following calculation policy has been devised to meet requirements of the National Curriculum 2014 for the teaching and learning of mathematics, and is also designed to give pupils a consistent and smooth progression of learning in calculations across the school.
- Age stage expectations:

The calculation policy is organised according to age stage expectations as set out in the National Curriculum 2014 and the method(s) shown for each year group should be modelled to the vast majority of pupils. However, it is vital that pupils are taught according to the pathway that they are currently working at and are showing to have 'mastered' a pathway before moving on to the next one. Of course, pupils who are showing to be secure in a skill can be challenged to the next pathway as necessary.

- Choosing a calculation method:

Before pupils opt for a written method they should first consider these steps:

```
can Idoitinmyhead could I use some should I use a formalwritten
using a mental strategy? jottings to help me? method to worke it out?
```


Calculation Guidance Principles

- Develop children's fluency with basic number facts
- Develop children's fluency in mental calculation
- Develop children's understanding of the = symbol
- Teach inequality alongside teaching equality
- Use empty box problems
- Use intelligent practice
- Expose mathematical structure and work systematically
- Move between the concrete and the abstract
- Contextualise the mathematics

ADDITION

MULTIPLICATION

SUBTRACTION

DIVISION

Concrete resources

Arrays
Multiplication sq Multiplication squares 100 square
Number lines
Blank number lines
Counting stick
Place value apparatus

- Count reliably with numbers from 1 to 20 and place them in order.
- Say which number is one more than a given number.
- Using quantities and objects, add two singledigit numbers and count on to find the answer.
- Solve problems including doubling.

Recognise numbers up to 20 and understand the meaning of each number by recognising and knowing their clusters

Count on in ones and say which number is one more than a given number using a number line or number track to 20.

Begin to relate addition to combining two groups of objects using practical resources, role play, stories and songs.

makes 5
Know
that

counting on is a strategy for addition. Use numbered number lines to 20

Subtraction

- Count reliably with numbers from 1 to 20 , forwards and backwards and place them in order.
- Say which number is one less than a given number.
- Using quantities and objects, subtract two single-digit numbers and count back to find the answer.
- Solve problems including halving.

1	2	3	4	5	6
13	12	11	10	9	7
14	10	10	8		
15	16	17	18		19
1	20				

Say which number is one less than a given number using a number line or number track to 20.

Begin to count backwards in familiar contexts such as number rhymes or stories.

10 Green Bottles sitting on the wall ...

Begin to relate subtraction to 'taking away' using concrete objects and role play.

Count backwards along a number line to 'take away'

Multiplication

- Solve problems including doubling, halving and sharing.

Use pictorial representations and concrete resources to double numbers to 10 .

Use concrete sources, role play, stories and songs to begin counting in twos, fives and tens.

Division

- Solve problems including doubling, halving and sharing.

Use pictorial representations and concrete resources to halve numbers to 10

Begin to share quantities using practical resources, role play, stories and songs.

Role play example:
It is the end of the party and the final two teddies are waiting for their party bags. Provide empty party bags and a small collection of items such as gitts, balloons and slices of cake. Ask the children to share the objects between the two bags.

Memorise and reason with number bonds to 10 and 20
 in several forms:

Count on in ones to and across 100 and find one more than a given number:

Use manipulatives and a number line to support the addition of numbers:

Solve one-step problems using concrete objects and pictorial representations:
eg: Eva buys 6 apples and Sam buys 2 apples. How many do they have altogether?

- Subtraction which number is one less than a given number.
- Represent and use number bonds and related subtraction facts within 20
- Read, write and interpret mathematical statements involving subtraction (-) and equals (=) signs.
- Subtract one-digit and two-digit numbers to 20, including zero.
- Solve one-step problems that involve subtraction using concrete objects and pictorial representations, and missing number problems.
Understand that subtraction is take away, using manipulatives and pictorial representations Use number bonds and related subtraction facts within 20:
Count back in ones and find one less that a given number:
 $\square=10$
$20-\square=15$

Ters Friame \qquad PatWhase Mosel Use a number line to support the subtraction of numbers. Use counting back to
subtract one-digit and two-digit numbers to 20.
$15-7=8$

Use counting on for 'find the difference' or the 'difference between'.

step
problems
using
concrete
objects and pictorial representations:

- Solve one-step problems involving multiplication by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher.

Count in twos, fives and tens using practical resources, role play, stories and songs, reinforced with the use of a number line

Understand multiplication as repeated addition use concrete objects to support understanding:

$$
\begin{aligned}
& 3 \times 5=15
\end{aligned}
$$

Use pictorial representations

Use arrays:
$3 \times 5=15$ or 3 groups of 5

15 apples
Solve one-step problems using concrete objects, pictorial representations and arrays:
eg: There are 3 sweets in one bag. How many sweets are there in 5 bags?

- Solve one-step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher.

Understand division as sharing using concrete resources. Pictorial representations of sharing 12 gold coins between 2, 3 and 4 pirates:

$$
12 \div 2
$$

$12 \div 4$
12 shared between 2 groups
$12 \div \mathbf{2}=\mathbf{6}$

Begin to understand division as grouping using concrete resources:

12 into groups of 2

$$
12 \div 2=6
$$

Addition fluently, and derive and use related facts to 100.

- Recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems.
- Add numbers using concrete objects, pictorial representations, and mentally, including:
- a two-digit number and ones
- a two-digit number and tens
- two two-digit numbers
- adding three one-digit numbers.
- Solve problems with addition including those involving numbers, quantities and measures. Memorise and reason with number facts to 20 in several forms and show that addition of 2 numbers can be done in any order (commutative) and subtraction of 1 number from another cannot.

Partition two 2-digit numbers using a variety of models and images.

number and ones and add a 2-digit number and tens. Use partitioning to add two 2-digit numbers using concrete resources and/or a number line:

Progressing on to combining jumps when confident.
Subtraction

- Recall and use subtraction facts to 20 fluently, and derive and use related facts to 100 .
- Recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems.
- Subtract numbers using concrete objects, pictorial representations and mentally, including:
- a two-digit number and ones
- a two-digit number and tens
- two two-digit numbers.

```
20-2=18
```

$18+2=20$

Memorise and reason with number facts to 20 in several forms.

Partition two 2digit
numbers using a variety of models and images.

Subtract a 2-digit number and ones and add a 2

Use partitioning to subtract two 2digit numbers using concrete resources and/or a number line.

36-12 = 24

- Recall and use multiplication and division facts for the 2, 5 and 10 multiplication tables, including recognising odd and even numbers.
- Calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (\times), division (\div) and equals (=) signs.
- Show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot.
- Solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in contexts.

Further develop understanding multiplication as repeated addition.

Use pictorial representations

Use arrays:

Recall multiplication and division facts for 2, 5 and 10:

Model and bridge link from repeated addition to solving multiplication problems using a number line.

$$
\begin{aligned}
& 9 \text { groups of } 2=18 \\
& 9 \text { jumps of } 2=18 \\
& 9 \times 2=18
\end{aligned}
$$

Division

- Recall and use division facts for 2,5 and 10 multiplication tables.
- Calculate mathematical statements for multiplication and division within the multiplication tables and write then using the multiplication (x), division (\div) and equals (=) signs
- Solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in contexts.
- Find $1 / 3 ; 1 / 4 ; 2 / 4 ; 3 / 4$ of a length, shape, set of objects or quantity
Further develop understanding of difference between sharing and grouping using concrete resources. Pictorial representations of sharing and grouping:
Reinforce division through the use of arrays
(e)ceeceeceeceocee(

18 smiley faces shared between 3 classes.

Model division as grouping on number lines:
18 into groups of $3=6$ groups 18 into jumps of $3=6$ jumps $18 \div 3=6$

Remember to develop connections

between fractions and division and rephrase this calculation as $1 / 3$ of 18 is the same as $18 \div 3=6$
Progress to using the expanded column method with place value resources to support the conceptual understanding of adding numbers up to three digits with carrying.

- Recognise the place value of each digit in a threedigit number (hundreds, tens, ones)
- Add numbers with up to three digits, using formal written methods of columnar addition.
Use expanded column method with place value resources to support the conceptual understanding of adding numbers up to three digits with no carrying.

- Recer in nise the place value of each igit number (hundreds, tens, ones) using formal written methods of column subtraction.
- Subtract numbers mentally, including
- A three-digit number and ones
- A three-digit number and tens
- A three-digit number and hundreds. Use expanded column method with place value resources to support the conceptual
understanding of subtracting numbers with up to three digits with no exchanging.

$42-11=31$	1010 (3) $=\begin{gathered}10 \\ 10\end{gathered}$		OR									
				3	4	8	\times	4	$4 ?$? ?		
			5				?	8	36	610		
$40+2$ $10+1$	10 10	10		5				6	2	41	1830	
$30+1$	18	10			4				?	32		2440

Progress to using the

OR
expanded column method with place value resources to support the conceptual
understanding of subtracting numbers with up to three digits with exchanging tens and/or hundreds. In this example to subtract 7 ones from 4 ones we need to exchange a ten for ten ones. We now can subtract 7 ones from 14 ones.

$70-27=47$	$60+14$	10884040	
	$70+4$		
OR	- $20+7$	(14) 40	
	$40+7$	- 20	7

Extend to using the expanod to add three method to add threedigit numbers + three
digit numbers with carrying.

$367+185=552$
$\frac{100+80+5}{500+50+2}$ $100 \quad 10$

Note: The

as important as any other number, therefore, it should be written as clear and as large as any other number and placed at the bottom of the column in which it is to be added.

Use concrete resources to develop conceptual understanding of the compact method introduced in Year 4: $12 \times 4=48$

- Recall and use multiplication and division facts for the 3, 4 and 8 multiplication tables.
- Write and calculate mathematical statements for multiplication using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing o formal written methods
- Solve problems, including missing number problems, involving multiplication including positive integer scaling problems and
correspondence problems in which n objects are connected to mobjects
Develop recall of multiplication facts (alongside inverse of the corresponding division facts).

Solve one-step multiplication problems involving scaling and correspondence problems in which n objects are connected to mobjects:
eg: The yellow ribbon is 4 times as long as the red ribbon What is its length?

Division

- Recall and use multiplication and division facts for the 3, 4 and 8 multiplication tables.
- Write and calculate mathematical statements for division using the multiplication tables that they know, including for two-digit numbers times onedigit numbers, using mental and progressing to formal written methods
- Solve problems, including missing number problems, involving division including positive integer scaling problems and correspondence problems in which n objects are connected to m objects.
Limit numbers to NO remainders in the answer OR carried (each digit must be a multiple of the divisor).

$$
\begin{array}{r}
32 \\
96
\end{array}
$$

Limit numbers to NO remainders in the final answer, but with remainders occurring within the calculation.

Extend to 3 -digit number first where the divisor can go into the first number and then progress to when the divisor cannot go into the first number.

Remember to develop connections between fractions and division and rephrase these calculations as $1 / 3$ of $96,1 / 4$ of $72,1 / 4$ of 872 and $1 / 5$ of 185 . Note: Year 3 fraction objective - Recognise, find and write fractions of a discrete set of objects: unit fractions and non-unit fractions with small denominators.

YEAR 4

Addition			
- Find 1000 more than a given number. - Add numbers with up to four digits, using the formal written methods of columnar addition where appropriate. - Solve addition two-step problems in contexts, deciding which operations and methods to use and why.			
Build on learning from Year 3 and model how expanded method links to compact column addition method.			
$40+7$	47	$300+60+7$	367
$30+6$		$\underline{100+80+}$	185
80+3	83	$500+50+2$	552
10	1	10010	11

Note: I he carried ten or carried hundred is just as important as any other number, therefore, it should be written as clear and as large as any other number, and placed at the bottom of the column in which it is to be added.
By the end of year 4, pupils should be adding numbers up to 4 digits using compact column addition method.

5271 $+2357$ $\frac{7628}{1}$

Children use formal written methods down the page, setting out calculation sums neatly and working accurately. Addition sign on the left of the problem, making sure that they have the value correctly lined up by the decimal place.
Extend to decimals in the case of money.
Continue using a range of equations with appropriate larger numbers.
Estimate and use inverse operations to check answers to a calculation
Solve addition and subtraction two-step problems in contexts, deciding which operations and methods to use and why. Add fractions with the same denominator within one whole, eg:
$\frac{5}{7}+\frac{1}{7}=\frac{6}{7}$

- Find 1000 less than a given number.
- Subtract numbers with up to four digits, using the formal written methods of columnar subtraction where appropriate.
- Solve subtraction two-step problems in contexts, deciding which operations and methods to use and why.
Build on learning from Year 3 and model how expanded method links to compact column subtraction method.

By the end of year 4, pupils should be subtracting numbers up to 4 digits using compact column subtraction method.

$$
\begin{array}{r}
784^{1} 2 \\
-1829 \\
\hline 6013 \\
\hline
\end{array}
$$

Note: The exchanged ten or hundred is just as important as any other number, therefore, it should be written as clear and as large as any other number, and placed at the top of the column which has been adjusted.

- Recall multiplication and division facts for
multiplication tables up to 12×12.
- Use place value, known and derived facts to multiply and divide mentally, including: multiply two-digit and three-digit numbers by a one-digit number using formal written layout.
- Solve problems involving multiplying and adding, including using the distributive law to multiply two-digit numbers by one-digit, integer scaling problems and harder correspondence problems such as n objects are connected to m objects.

Develop recall of multiplication facts (alongside the inverse of the corresponding division facts).

Build on learning from Year 3 and model how grid method and/or expanded method links to compact short multiplication.

$30+6$
$\times 4$
24
+120
144

Use knowledge of times tables to solve scaling problems.
eg: Susie wants to bake 12 cupcakes for her friends. The ingredients given are for four cupcakes. How much flour will she need?

2 eggs
150 g flour
180 g sugar

Division

There isn't a statutory objective for division. However, Year 4 statutory multiplication
objectives are to:

- Recall multiplication and division facts for multiplication tables up to 12×12 and
- Multiply two-digit and three-digit numbers by a one-digit number using formal written layout, so in Year 4 we will build on the connections between multiplication and division.
Consolidate learning and understanding from Year 3:
Limit numbers to NO remainders in the answer OR carried (each digit must be a multiple of the divisor).

Limit numbers to NO remainders in the final answer, but with remainders occurring
 within the
 within the calculation

Extend to 3-digit number first where the divisor can go into the first number and then progress to when the divisor cannot go into the first number.

Remember to develop connections between fractions and division and rephrase these calculations as $1 / 3$ of $96,1 / 4$ of $72,1 / 4$ of 872 and $1 / 5$ of 185 . Note: Year 4 fraction objective - Solve problems involving increasingly harder fractions to calculate quantities, and fractions to divide quantities, including non-unit fractions where the answer is a whole number.

Addition Add whole numbers with more than 4 digits
formal written methods of columnar addition.

- Add numbers mentally, with increasingly large numbers.
- Solve addition multi-step problems in contexts, deciding which operations and methods to use and why.
- Solve problems involving numbers up to three decimal places.
In year 5 and 6 pupils should be adding numbers using compact column addition method. Note: The carried ten, hundred or thousand is just as important as any other number, therefore, it should be written as clear and as large as any other number, and placed at the bottom of the column in which it is to be added.

$$
\begin{array}{r}
46892 \\
+32758 \\
\hline 79650 \\
\hline 111
\end{array}
$$

When adding decimals, it is essential that the decimal point does not move and kept in line.
Where necessary, a zero should be added as a place holder.

$$
12.5+23.7 \quad 34.5+27.43
$$

12.5
+23.7
36.2
1
---:
+27.43
$\frac{61.93}{1}$

- Subtract whole numbers with more than 4 digits using formal written methods of columnar subtraction.
- Subtract numbers mentally, with increasingly large numbers.
- Solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why.
- Solve problems involving numbers up to three decimal places.
In year 5 and 6 pupils should be subtracting numbers using compact column subtraction method.
Note: The exchanged ten or hundred is just as important as any other number. Therefore, it should be written as clear and as large as any other number, and placed at the top of the column which has been adjusted.

| 8 | | | 7 | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 9^{1} | 6 | 7 | 8^{1} | 3 |
| 5 | 8 | 7 | 3 | 5 |
| | 8 | 0 | 4 | 8 |

When subtracting decimals, it is essential that the decimal point does not move and kept in line. Where necessary, a zero should be added as a place holder.

- Multiply numbers up to 4 digits by a one- or twodigit number using a formal written method, including long multiplication for two-digit numbers.
- Multiply and divide whole numbers and those involving decimals by 10,100 and 1000 .

Build on learning from Year 4 and use concrete resources if needed to multiply numbers up to 4 digits by one digit using compact short multiplication.

To multiply by $10,100,1000$, children should use place value charts to show that the digit moves a column(s) to the left. The value of the digit is increasing by 10,100 or 1000 times.

Division

- Divide numbers up to 4 digits by a one digit number using the formal written method of short division and interpret remainders appropriately for the context.

Further secure pupils' understanding of compact short division.

$218 \div 8=$
 27 r 2 $8 \longdiv { z ^ { 2 } 1 ^ { 5 } 8 }$

Extend to expressing results in different ways according to the context, including with remainders as fractions, as decimals or by rounding. For example:

- Whole number remainder $=27 r 2$
- Fraction remainder $=27 \frac{2}{8}=27 \frac{1}{4}$
- Decimal remainder $=27 \frac{1}{4}=27 \frac{25}{100}$

Addition formal written methods of columnar addition.

- Add numbers mentally, with increasingly large numbers.
- Solve addition multi-step problems in contexts, deciding which operations and methods to use and why.
- Solve problems involving numbers up to three decimal places.

In addition to the Year 5 statutory requirements, Year 6 pupils are expected to solve more complex addition and subtraction problems.

In year 5 and 6 pupils should be adding numbers using compact column addition method. Note: The carried ten, hundred or thousand is just as important as any other number, therefore, it should be written as clear and as large as any other number, and placed at the bottom of the column in which it is to be added.

$$
46892
$$

$+32758$

79650

 111When adding decimals, it is essential that the decimal point does not move and kept in line.
Where necessary, a zero should be added as a place holder.

$$
12.5+23.7 \quad 34.5+27.43
$$

12.5

34.5
$\begin{array}{r}+23.7 \\ \hline 36.2\end{array}$
$\begin{array}{r}+27.43 \\ \hline 61.93 \\ \hline 1\end{array}$

- Subtract whole numbers with more than 4 digits using formal written methods of columnar subtraction.
- Subtract numbers mentally, with increasingly large numbers.
- Solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why.
- Solve problems involving numbers up to three decimal places.

In addition to the Year 5 statutory requirements, Year 6 pupils are expected to solve more complex addition and subtraction problems.

In year 5 and 6 pupils should be subtracting numbers using compact column subtraction method.
Note: The exchanged ten or hundred is just as important as any other number. Therefore, it should be written as clear and as large as any other number, and placed at the top of the column which has been adjusted.

$$
\begin{aligned}
& 8 \\
& 9
\end{aligned}{ }^{1} 6
$$

When subtracting decimals, it is essential that the decimal point does not move and kept in line. Where necessary, a zero should be added as a place holder.

- Multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication.
- Multiply one-digit numbers with up to two decimal places by whole numbers.

Build on learning from Year 5, multiplying numbers using compact short multiplication and long division.

	21
643×8	11
32	$\times 54$
643	2572
$\times 8$	+32150
5144	34722

$$
\begin{array}{r}
23 \\
7.68 \\
\times \quad 4 \\
\hline 30.72 \\
\hline
\end{array}
$$

Use compact short multiplication to multiply a decimal number by a whole number.

Division

- Divide numbers up to 4 digits by a twodigit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context.

Continue to use compact short division to divide numbers up to 4 digits by a 1 -digit whole number.

27 r 2

$8 \longdiv { 2 ^ { 2 } 1 ^ { 5 } 8 }$

- Whole number remainder $=27 \mathrm{r} 2$
- Fraction remainder $=27 \frac{2}{8}=27 \frac{1}{4}$
- Decimal remainder $=27 \frac{1}{4}=27 \frac{25}{100}=27.25$

Use long division to divide numbers up to 4 digits by a 2 -digit whole number.

$$
\begin{aligned}
& 024 r^{1} \\
& 4 \longdiv { 5 8 8 } \\
& -48 \\
& \hline 108 \\
& -\quad 96 \\
& \hline 12
\end{aligned}
$$

Find the

 multiples of the divisor by partitioning,eg:

